Plot Average Treatment Effect Density from Bootstrap Results
Usage
plot_ATE(
input,
ATE = "RD",
col_density = "blue",
fill_density = "lightblue",
main = "Posterior Predictive Distribution of Average Treatment Effect",
xlab = "ATE",
ylab = "Posterior Predictive Distribution",
xlim = NULL,
ylim = NULL,
...
)
Arguments
- input
A model object, data frame or vector containing the bootstrap estimates of ATE.
- ATE
define causal estimand of interest from RD, OR, RR.
- col_density
Color for the density plot (default is "blue").
- fill_density
Fill color for the density plot (default is "lightblue").
- main
Title of the plot (default is "Density of ATE Estimates").
- xlab
X-axis label (default is "ATE").
- ylab
Y-axis label (default is "Density").
- xlim
Limits for the x-axis (default is NULL).
- ylim
Limits for the y-axis (default is NULL).
- ...
Additional graphical parameters passed to the plot function.
Examples
testdata <- read.csv(system.file("extdata",
"continuous_outcome_data.csv",
package = "bayesmsm"))
model <- bayesmsm(ymodel = y ~ a_1+a_2,
nvisit = 2,
reference = c(rep(0,2)),
comparator = c(rep(1,2)),
treatment_effect_type = "sq",
family = "gaussian",
data = testdata,
wmean = rep(1, 1000),
nboot = 100,
optim_method = "BFGS",
parallel = TRUE,
ncore = 2)
plot_ATE(model)